Congruences on ideals of semigroups and categories

James East

Centre for Research in Mathematics

Semigroup afternoon University of York 3 July 2019

Joint work with Nik Ruškuc

Normal subgroups of the symmetric group S_n

Normal subgroups of the symmetric group S_n

There are three: ${id_n} \trianglelefteq \mathcal{A}_n \trianglelefteq \mathcal{S}_n$.

Normal subgroups of the symmetric group S_n

There are three: ${id_n} \trianglelefteq \mathcal{A}_n \trianglelefteq \mathcal{S}_n$.

Exceptions:

- ▶ ${id_0} = A_0 = S_0$,
- $\blacktriangleright \ \{\mathsf{id}_1\} = \mathcal{A}_1 = \mathcal{S}_1,$
- $\blacktriangleright \ \{\mathsf{id}_2\} = \mathcal{A}_2 \trianglelefteq \mathcal{S}_2,$

Normal subgroups of the symmetric group S_n

There are three: ${id_n} \trianglelefteq \mathcal{A}_n \trianglelefteq \mathcal{S}_n$.

Exceptions:

- ▶ ${id_0} = A_0 = S_0$,
- ${id_1} = \mathcal{A}_1 = \mathcal{S}_1$,
- $\blacktriangleright \ \{\mathsf{id}_2\} = \mathcal{A}_2 \trianglelefteq \mathcal{S}_2,$
- $\blacktriangleright \ \{\mathsf{id}_4\} \trianglelefteq K \trianglelefteq \mathcal{A}_4 \trianglelefteq \mathcal{S}_4.$

Normal subgroups of the symmetric group S_n

There are three: ${id_n} \trianglelefteq \mathcal{A}_n \trianglelefteq \mathcal{S}_n$.

Exceptions:

General shape of $\mathcal{N}(\mathcal{S}_n)$:

- ▶ ${id_0} = A_0 = S_0$,
- ${id_1} = \mathcal{A}_1 = \mathcal{S}_1$,
- $\blacktriangleright \ \{\mathsf{id}_2\} = \mathcal{A}_2 \trianglelefteq \mathcal{S}_2,$
- $\blacktriangleright \ \{\mathsf{id}_4\} \trianglelefteq K \trianglelefteq \mathcal{A}_4 \trianglelefteq \mathcal{S}_4.$

(Normal) subgroups of the cyclic group C_n

They correspond to the divisors of n.

Normal subgroups of the dihedral group D_n

They correspond to the divisors of n (sort of); also depends on parity of n.

Normal subgroups of the dihedral group D_n

They correspond to the divisors of n (sort of); also depends on parity of n.

Normal subgroups of the dihedral group D_n

They correspond to the divisors of n (sort of); also depends on parity of n.

► Normal subgroups ⇔ quotient groups.

- ► Normal subgroups ⇔ quotient groups.
- Ideals of rings \Leftrightarrow quotient rings.

- ► Normal subgroups ⇔ quotient groups.
- Ideals of rings \Leftrightarrow quotient rings.
- Groups and rings are lucky.

- ► Normal subgroups ⇔ quotient groups.
- Ideals of rings \Leftrightarrow quotient rings.
- ► Groups and rings are lucky... Normally we need congruences.

- ► Normal subgroups ⇔ quotient groups.
- Ideals of rings \Leftrightarrow quotient rings.
- Groups and rings are lucky... Normally we need congruences.

Definition (congruence on a structure S)

An equivalence on S compatible with its operation(s).

- ► Normal subgroups ⇔ quotient groups.
- Ideals of rings \Leftrightarrow quotient rings.
- Groups and rings are lucky... Normally we need congruences.

Definition (congruence on a structure S)

An equivalence on S compatible with its operation(s).

Definition (congruence on a semigroup S)

An equivalence σ on S such that:

►
$$(x, y) \in \sigma \implies (ax, ay), (xa, ya) \in \sigma$$
 for all $a \in S$.

- ► Normal subgroups ⇔ quotient groups.
- Ideals of rings \Leftrightarrow quotient rings.
- ► Groups and rings are lucky... Normally we need congruences.

Definition (congruence on a structure S)

An equivalence on S compatible with its operation(s).

Definition (congruence on a category S)

An equivalence σ on (morphisms of) S such that:

- $(x, y) \in \sigma \Rightarrow (ax, ay), (xa, ya) \in \sigma$ when products defined,
- $(x, y) \in \sigma \Rightarrow \mathbf{d}(x) = \mathbf{d}(y) \text{ and } \mathbf{r}(x) = \mathbf{r}(y).$

- ► Normal subgroups ⇔ quotient groups.
- Ideals of rings \Leftrightarrow quotient rings.
- Groups and rings are lucky... Normally we need congruences.

Definition (congruence on a structure S)

An equivalence on S compatible with its operation(s).

▶ The set Cong(S) of all congruences forms a lattice.

- ► Normal subgroups ⇔ quotient groups.
- Ideals of rings \Leftrightarrow quotient rings.
- Groups and rings are lucky... Normally we need congruences.

Definition (congruence on a structure S)

An equivalence on S compatible with its operation(s).

▶ The set Cong(S) of all congruences forms a lattice.

Natural problem

Given S, find Cong(S).

- ► Normal subgroups ⇔ quotient groups.
- Ideals of rings \Leftrightarrow quotient rings.
- Groups and rings are lucky... Normally we need congruences.

Definition (congruence on a structure S)

An equivalence on S compatible with its operation(s).

▶ The set Cong(S) of all congruences forms a lattice.

Natural problem

Given S, find Cong(S). Today S will usually be a semigroup.

Let *T_n* = full transformation semigroup on **n** = {1,..., *n*}
= {functions **n** → **n**}.

Let *T_n* = full transformation semigroup on **n** = {1,..., *n*}
= {functions **n** → **n**}.

Let *T_n* = full transformation semigroup on **n** = {1,..., *n*}
= {functions **n** → **n**}.

What are these congruences?

Ideal of a semigroup S

Ideal of a semigroup S

A nonempty subset I of S such that $IS \subseteq S$ and $SI \subseteq S$.

Ideal of a semigroup S

A nonempty subset I of S such that $IS \subseteq S$ and $SI \subseteq S$.

Rees congruence on a semigroup S

Ideal of a semigroup S

A nonempty subset I of S such that $IS \subseteq S$ and $SI \subseteq S$.

Rees congruence on a semigroup S

If I is an ideal of S, then we have a congruence:

 $R_I = \nabla_I \cup \Delta_S.$

Ideal of a semigroup S

A nonempty subset I of S such that $IS \subseteq S$ and $SI \subseteq S$.

Rees congruence on a semigroup S

If I is an ideal of S, then we have a congruence:

 $R_I = \nabla_I \cup \Delta_S.$

All of I is collapsed to a point.

Ideal of a semigroup S

A nonempty subset I of S such that $IS \subseteq S$ and $SI \subseteq S$.

Rees congruence on a semigroup S

If I is an ideal of S, then we have a congruence:

 $R_I = \nabla_I \cup \Delta_S.$

All of I is collapsed to a point. The rest of S is preserved.

Rees congruences are white.

- Rees congruences are white.
- What are the other congruences?
• For $\alpha \in \mathcal{T}_n$ define rank $(\alpha) = |im(\alpha)|$.

- For $\alpha \in \mathcal{T}_n$ define rank $(\alpha) = |im(\alpha)|$.
- For $1 \le r \le n$ define

•
$$D_r = \{ \alpha \in \mathcal{T}_n : \operatorname{rank}(\alpha) = r \},$$

- For $\alpha \in \mathcal{T}_n$ define rank $(\alpha) = |im(\alpha)|$.
- For $1 \le r \le n$ define

•
$$D_r = \{ \alpha \in \mathcal{T}_n : \operatorname{rank}(\alpha) = r \},$$

- For $\alpha \in \mathcal{T}_n$ define rank $(\alpha) = |im(\alpha)|$.
- For $1 \le r \le n$ define

•
$$D_r = \{ \alpha \in \mathcal{T}_n : \operatorname{rank}(\alpha) = r \},$$

$$I_r = \{ \alpha \in \mathcal{T}_n : \mathsf{rank}(\alpha) \le r \}.$$

- For $\alpha \in \mathcal{T}_n$ define rank $(\alpha) = |im(\alpha)|$.
- For $1 \le r \le n$ define

•
$$D_r = \{ \alpha \in \mathcal{T}_n : \operatorname{rank}(\alpha) = r \},$$

$$I_r = \{ \alpha \in \mathcal{T}_n : \mathsf{rank}(\alpha) \le r \}.$$

• For $1 \le r \le n$ define

•
$$D_r = \{ \alpha \in \mathcal{T}_n : \operatorname{rank}(\alpha) = r \},\$$

$$I_r = \{ \alpha \in \mathcal{T}_n : \mathsf{rank}(\alpha) \le r \}.$$

• Ideals: $I_1 \subset I_2 \subset \cdots \subset I_n = \mathcal{T}_n$.

- For $\alpha \in \mathcal{T}_n$ define rank $(\alpha) = |im(\alpha)|$.
- For $1 \le r \le n$ define

•
$$D_r = \{ \alpha \in \mathcal{T}_n : \operatorname{rank}(\alpha) = r \},\$$

$$I_r = \{ \alpha \in \mathcal{T}_n : \operatorname{rank}(\alpha) \le r \}.$$

- Ideals: $I_1 \subset I_2 \subset \cdots \subset I_n = \mathcal{T}_n$.
- ▶ Rees congruences: $R_{I_1} \subset R_{I_2} \subset \cdots \subset R_{I_n} = \nabla$.

- For $\alpha \in \mathcal{T}_n$ define rank $(\alpha) = |im(\alpha)|$.
- For $1 \le r \le n$ define

$$\triangleright \quad D_r = \{ \alpha \in \mathcal{T}_n : \mathsf{rank}(\alpha) = r \},\$$

$$I_r = \{ \alpha \in \mathcal{T}_n : \operatorname{rank}(\alpha) \le r \}.$$

• Ideals:
$$I_1 \subset I_2 \subset \cdots \subset I_n = \mathcal{T}_n$$
.

- ▶ Rees congruences: $R_{I_1} \subset R_{I_2} \subset \cdots \subset R_{I_n} = \nabla$.
- Inside D_r are lots of little groups $\cong S_r$.

- For $\alpha \in \mathcal{T}_n$ define rank $(\alpha) = |im(\alpha)|$.
- For $1 \le r \le n$ define
 - $D_r = \{ \alpha \in \mathcal{T}_n : \operatorname{rank}(\alpha) = r \},$
 - $I_r = \{ \alpha \in \mathcal{T}_n : \mathsf{rank}(\alpha) \le r \}.$
- Ideals: $I_1 \subset I_2 \subset \cdots \subset I_n = \mathcal{T}_n$.
- ▶ Rees congruences: $R_{I_1} \subset R_{I_2} \subset \cdots \subset R_{I_n} = \nabla$.
- Inside D_r are lots of little groups $\cong S_r$.

			1	4				
			5	4				
							-	F
				S_3	S_3			
			S_3		S_3			
			S_3	S_3				
		S_3			S_3			
		S_3		S_3				
		S_3	S_3					
ſ			S_2		S_2	S_2		,
ĺ		S_2		S_2		S_2		13
ĺ		S_2	S_2	S_2	S_2			
	S_2			S_2	S_2			
	S_2		S_2	S_2		S_2		
	S_2	S_2			S_2	S_2		
	S_2	S_2	S_2					
		S_1	<i>S</i> ₁	S_1	S_1			

- For $\alpha \in \mathcal{T}_n$ define rank $(\alpha) = |im(\alpha)|$.
- For $1 \le r \le n$ define
 - $D_r = \{ \alpha \in \mathcal{T}_n : \operatorname{rank}(\alpha) = r \},\$
 - $I_r = \{ \alpha \in \mathcal{T}_n : \mathsf{rank}(\alpha) \le r \}.$
- Ideals: $I_1 \subset I_2 \subset \cdots \subset I_n = \mathcal{T}_n$.
- ▶ Rees congruences: $R_{I_1} \subset R_{I_2} \subset \cdots \subset R_{I_n} = \nabla$.
- Inside D_r are lots of little groups $\cong S_r$.
- Each $N \trianglelefteq S_r$ gives another congruence R_N :

		1	4				
		5	4				
						_	г
			S_3	S_3			
		S_3		S_3			
		S_3	S_3				
	S_3			S_3			
	S_3		S_3				
	S_3	S_3					
		S_2		S_2	S_2		, I
	S_2		S_2		S_2		13
	S_2	S_2	S_2	S_2			
S_2			S_2	S_2			
S_2		S_2	S_2		S_2		
S_2	S_2			S_2	S_2		
S_2	S_2	S_2					
	C	c	c	c	1		
	S_1	51	51	51			

- For $\alpha \in \mathcal{T}_n$ define rank $(\alpha) = |im(\alpha)|$.
- For $1 \le r \le n$ define
 - $D_r = \{ \alpha \in \mathcal{T}_n : \operatorname{rank}(\alpha) = r \},\$
 - $I_r = \{ \alpha \in \mathcal{T}_n : \mathsf{rank}(\alpha) \le r \}.$
- Ideals: $I_1 \subset I_2 \subset \cdots \subset I_n = \mathcal{T}_n$.
- ▶ Rees congruences: $R_{I_1} \subset R_{I_2} \subset \cdots \subset R_{I_n} = \nabla$.
- Inside D_r are lots of little groups $\cong S_r$.
- Each $N \trianglelefteq S_r$ gives another congruence R_N :
 - each S_r collapses to S_r/N ,

		1	4					
		5	4					
			C	6	1	-	Г	
	_		53	53				
		S_3		53				
		S_3	S_3					
	S_3			S_3				
	S_3		S_3					
	S_3	S_3						
		<i>S</i> ₂		S_2	<i>S</i> ₂		Ι,	
	S_2		S_2		S_2		1 3	;
	S_2	S_2	S_2	S_2				
S_2			S_2	S_2				
S_2		S_2	S_2		S_2			
S_2	S_2			S_2	S_2			
S_2	S_2	S_2						
	C	C	C	C	1			
	51	51	51	51				

- For $\alpha \in \mathcal{T}_n$ define rank $(\alpha) = |im(\alpha)|$.
- For $1 \le r \le n$ define
 - $D_r = \{ \alpha \in \mathcal{T}_n : \operatorname{rank}(\alpha) = r \},\$
 - $I_r = \{ \alpha \in \mathcal{T}_n : \mathsf{rank}(\alpha) \le r \}.$
- Ideals: $I_1 \subset I_2 \subset \cdots \subset I_n = \mathcal{T}_n$.
- ▶ Rees congruences: $R_{I_1} \subset R_{I_2} \subset \cdots \subset R_{I_n} = \nabla$.
- Inside D_r are lots of little groups $\cong S_r$.
- Each $N \trianglelefteq S_r$ gives another congruence R_N :
 - each S_r collapses to S_r/N ,
 - all of I_{r-1} collapses to a point.

		1	4				
		5	4				
						_	Г
			S_3	S_3			
		S_3		S_3			
		S_3	S_3				
	S_3			S_3			
	S_3		S_3				
	S_3	S_3					
		S_2		S_2	S_2		Ι,
	S_2		S_2		S_2		/3
	S_2	S_2	S_2	S_2			
S_2			S_2	S_2			
S_2		S_2	S_2		S_2		
S_2	S_2			S_2	S_2		
S_2	S_2	S_2					
	$ S_1 $	S ₁	51	S_1			

 \mathcal{T}_4 $Cong(\mathcal{T}_4)$ \mathcal{T}_4 S_4 S_4 R_{S_4} R_{A_4} R_K S3 S R_{l_3} R_{S_3} R_{A_3} R_{I_2} R_{S_2} R_{I_1} $S_1 S_1 S_1 S_1$ $S_1 | S_1 | S_1 | S_1$ Δ

 \mathcal{T}_4 $Cong(\mathcal{T}_4)$ \mathcal{T}_4/Δ S_4 S_4 S3 S 53 S $S_1 S_1 S_1 S_1$ $S_1 | S_1 | S_1 | S_1$ Δ

 \mathcal{T}_4 $Cong(\mathcal{T}_4)$ \mathcal{T}_4/R_{I_1} S_4 S_4 S3 S R_{I_1} $S_1 S_1 S_1 S_1$ •

 \mathcal{T}_4 $Cong(\mathcal{T}_4)$ $\mathcal{T}_4/R_{\mathcal{S}_2}$ S_4 S_4 S S R_{S_2} $S_1 S_1 S_1 S_1$ •

 $\mathcal{S}_2/\mathcal{S}_2\cong \mathcal{S}_1$

 \mathcal{T}_4 $Cong(\mathcal{T}_4)$ \mathcal{T}_4/R_{I_2} S_4 *S*₄ S3 S • R_{l_2} $S_1 S_1 S_1 S_1$

 $\mathsf{Cong}(\mathcal{T}_4)$ \mathcal{T}_4 $\mathcal{T}_4/R_{\mathcal{A}_3}$ S_4 *S*₄ $S_3/A_3 \cong S_2$ So • R_{A_3} R_{S_2} $S_1 S_1 S_1 S_1$

 \mathcal{T}_4 $Cong(\mathcal{T}_4)$ $\mathcal{T}_4/R_{\mathcal{S}_3}$ S_4 *S*₄ $\mathcal{S}_3/\mathcal{S}_3\cong \mathcal{S}_1$ S3 R_{S_3} • R_{S_2} $S_1 S_1 S_1 S_1$

 \mathcal{T}_4 $Cong(\mathcal{T}_4)$ \mathcal{T}_4/R_{I_3} S_4 S_4 • S3 R_I $S_1 S_1 S_1 S_1$

 \mathcal{T}_4 $Cong(\mathcal{T}_4)$ T_4/R_K S_4 S_3 $\mathcal{S}_4/K\cong \mathcal{S}_3$ • R_K S R_{S_2} $S_1 S_1 S_1 S_1$

 \mathcal{T}_4 $Cong(\mathcal{T}_4)$ $\mathcal{T}_4/R_{\mathcal{A}_4}$ S_4 S_2 $\mathcal{S}_4/\mathcal{A}_4\cong \mathcal{S}_2$ • R_{A_4} R_{S_2} $S_1 S_1 S_1 S_1$

 $Cong(\mathcal{T}_4)$ \mathcal{T}_4 \mathcal{T}_4/∇ S_4 • S3 $S_1 S_1 S_1 S_1$

• An ideal I of S leads to a congruence R_I on S.

- An ideal I of S leads to a congruence R_I on S.
- But I is also a semigroup!

- An ideal I of S leads to a congruence R_I on S.
- But I is also a semigroup!
- ▶ What are the congruences on *I*?

- An ideal I of S leads to a congruence R_I on S.
- But I is also a semigroup!
- What are the congruences on I?

Natural problem

Given S, find Cong(I) for each ideal I of S.

- An ideal I of S leads to a congruence R_I on S.
- But I is also a semigroup!
- What are the congruences on I?

Natural problem

Given S, find Cong(I) for each ideal I of S.

Natural problem

Can we describe $\text{Cong}(I_r)$, where $I_r = I_r(\mathcal{T}_n)$?

- An ideal I of S leads to a congruence R_I on S.
- But I is also a semigroup!
- What are the congruences on I?

Natural problem

Given S, find Cong(I) for each ideal I of S.

Natural problem

Can we describe $\text{Cong}(I_r)$, where $I_r = I_r(\mathcal{T}_n)$?

Let's ask GAP!

▶ I_1 is an *n*-element right-zero semigroup: $Cong(I_1) \cong \mathfrak{Eq}_n$.

- ▶ I_1 is an *n*-element right-zero semigroup: $Cong(I_1) \cong \mathfrak{Eq}_n$.
- ▶ For $r \ge 2$, is Cong (I_r) just Cong (\mathcal{T}_n) chopped off?

Congruences on ideals of \mathcal{T}_n

Theorem		
Yes!		

Congruences on ideals of \mathcal{T}_n

Theorem

- $\operatorname{Cong}(I_1) \cong \mathfrak{Eq}_n$.
- ► Cong $(I_r) = \{R_N^{I_r} : N \trianglelefteq S_q, q \le n\} \cup \{\nabla_{I_r}\}$ for $2 \le r \le n$.
Congruences on ideals of \mathcal{T}_n

- $\operatorname{Cong}(I_1) \cong \mathfrak{Eq}_n$.
- ▶ $\mathsf{Cong}(I_r) = \{ R_N^{I_r} : N \trianglelefteq S_q, \ q \le n \} \cup \{ \nabla_{I_r} \} \text{ for } 2 \le r \le n.$
- Original proof strategy:
 - Deal with I_1 and I_r ($r \ge 2$) separately.
 - Use knowledge about $Cong(\mathcal{T}_n)$.

Congruences on ideals of T_n

- $\operatorname{Cong}(I_1) \cong \mathfrak{Eq}_n$.
- ► Cong $(I_r) = \{R_N^{I_r} : N \leq S_q, q \leq n\} \cup \{\nabla_{I_r}\}$ for $2 \leq r \leq n$.
- Original proof strategy:
 - Deal with I_1 and I_r ($r \ge 2$) separately.
 - Use knowledge about $Cong(\mathcal{T}_n)$.
- Later: general machinery that works for many other semigroups and categories...
 - transformations, linear transformations, diagrams, braids...

Congruences on ideals of T_n

- $\operatorname{Cong}(I_1) \cong \mathfrak{Eq}_n$.
- ► Cong $(I_r) = \{R_N^{I_r} : N \leq S_q, q \leq n\} \cup \{\nabla_{I_r}\}$ for $2 \leq r \leq n$.
- Original proof strategy:
 - Deal with I_1 and I_r ($r \ge 2$) separately.
 - Use knowledge about $Cong(\mathcal{T}_n)$.
- Later: general machinery that works for many other semigroups and categories...
 - transformations, linear transformations, diagrams, braids...
 - ▶ Treat smallest ideal(s) of *S*, then "lift" from one to the next.

Congruences on ideals of T_n

- $\operatorname{Cong}(I_1) \cong \mathfrak{Eq}_n$.
- ► Cong $(I_r) = \{R_N^{I_r} : N \trianglelefteq S_q, q \le n\} \cup \{\nabla_{I_r}\}$ for $2 \le r \le n$.
- Original proof strategy:
 - Deal with I_1 and I_r ($r \ge 2$) separately.
 - Use knowledge about $Cong(\mathcal{T}_n)$.
- Later: general machinery that works for many other semigroups and categories...
 - transformations, linear transformations, diagrams, braids...
 - ▶ Treat smallest ideal(s) of *S*, then "lift" from one to the next.
 - No need to know Cong(S) in advance.

Theorem

- ► Suppose T is a semigroup with a stable, regular maximum *J*-class D_T.
- Suppose the ideal $S = T \setminus D_T$ has a stable, regular maximum \mathscr{J} -class D_S .
- Suppose $(x, y)^{\sharp} = \nabla_S$ for all $x \in D_S$ and $y \in S \setminus H_x$.
- Suppose every congruence on S is liftable to T.
- One more technical assumption.
- Let G be a group \mathcal{H} -class contained in D_T .

Then

$$\operatorname{Cong}(T) = \left\{ \Delta_{D_T} \cup \sigma : \sigma \in \operatorname{Cong}(S) \right\} \cup \left\{ R_{S,N}^T : N \trianglelefteq G \right\} \cup \left\{ \nabla_T \right\}.$$

Theorem

- Let S be a stable, regular partial semigroup with a chain of 𝓕-classes D₀ < D₁ < · · ·.</p>
- ► The ideals of S are I_r = D₀ ∪ · · · ∪ D_r (and I_ω = S if the chain is infinite).
- Let G_q be a group \mathcal{H} -class in D_q .
- Suppose for some k every congruence on I_k is liftable to S.
- A technical property on I_k , and another on I_{k+1}, I_{k+2}, \ldots

Then for any $r \geq k$ (including $r = \omega$),

$$\begin{aligned} \mathsf{Cong}(I_r) &= \left\{ \Delta_{I_r} \cup \sigma : \sigma \in \mathsf{Cong}(I_k) \right\} \\ &\cup \left\{ R_{I_q,N}^{I_r} : k \leq q < r, \ N \trianglelefteq \mathsf{G}_{q+1} \right\} \cup \left\{ \nabla_{I_r} \right\}. \end{aligned}$$

• Full transformation categories $\mathcal{T} = \mathcal{T}(\mathscr{C})$

- Full transformation categories $\mathcal{T} = \mathcal{T}(\mathscr{C})$
 - Subcategories preserving/reversing order/orientation:
 O, *OD*, *OP*, *OR*.

- Full transformation categories $\mathcal{T} = \mathcal{T}(\mathscr{C})$
 - Subcategories preserving/reversing order/orientation:
 O, *OD*, *OP*, *OR*.

• Partition categories $\mathcal{P} = \mathcal{P}(\mathscr{C})$

> Planar, anti-planar, annular, anti-annular subcategories.

• Brauer categories \mathcal{B}

- Brauer categories \mathcal{B}
- $I_0(\mathcal{B}_4)$: $\mathfrak{Eq}_3 \times \mathfrak{Eq}_3$

- Brauer categories \mathcal{B}
- $I_2(\mathcal{B}_4)$: $(\mathfrak{Eq}_3 \times \mathfrak{Eq}_3) \times \mathbf{3}$

- Brauer categories \mathcal{B}
- ► $I_4(\mathcal{B}_4)$

- Brauer categories \mathcal{B}
- ► (Anti-)planar/annular subcategories: Temperley-Lieb, Jones...

• (Anti-)Temperley-Lieb categories \mathcal{TL} and \mathcal{TL}^{\pm}

Some semigroups/categories with chains of ideals don't fit the mould of the above theorems.

- Some semigroups/categories with chains of ideals don't fit the mould of the above theorems.
- Examples include linear categories and partial braid categories.

- Some semigroups/categories with chains of ideals don't fit the mould of the above theorems.
- Examples include linear categories and partial braid categories.
- ▶ These have nontrivial congruences contained in *ℋ*.

- Some semigroups/categories with chains of ideals don't fit the mould of the above theorems.
- Examples include linear categories and partial braid categories.
- ▶ These have nontrivial congruences contained in *ℋ*.
- ▶ We have general results to deal with (some of) these.

- Some semigroups/categories with chains of ideals don't fit the mould of the above theorems.
- Examples include linear categories and partial braid categories.
- ▶ These have nontrivial congruences contained in *ℋ*.
- ▶ We have general results to deal with (some of) these.
- ► Congruences of form $R_{I_q,N_{q+1},N_{q+2},...}^{I_r}$, with $N_{q+1} \succeq N_{q+2} \succeq \cdots$

- Some semigroups/categories with chains of ideals don't fit the mould of the above theorems.
- Examples include linear categories and partial braid categories.
- ▶ These have nontrivial congruences contained in *ℋ*.
- ▶ We have general results to deal with (some of) these.
- ▶ Congruences of form $R_{I_q,N_{q+1},N_{q+2},...}^{I_r}$, with $N_{q+1} \succeq N_{q+2} \succeq \cdots$
- Can still build $\text{Cong}(I_{r+1})$ from $\text{Cong}(I_r)$.
 - It's just more complicated...

Other categories:

- Other categories:
 - twisted diagram categories

- Other categories:
 - twisted diagram categories
 - tangle/vine categories

- Other categories:
 - twisted diagram categories
 - tangle/vine categories
 - transformations/diagrams with infinite underlying sets

- Other categories:
 - twisted diagram categories
 - tangle/vine categories
 - transformations/diagrams with infinite underlying sets
- Some fit our general framework, some don't
Current/future work

- Other categories:
 - twisted diagram categories
 - tangle/vine categories
 - transformations/diagrams with infinite underlying sets
- Some fit our general framework, some don't
- One-sided ideals

Current/future work

- Other categories:
 - twisted diagram categories
 - tangle/vine categories
 - transformations/diagrams with infinite underlying sets
- Some fit our general framework, some don't
- One-sided ideals
- Variants/sandwich semigroups

Thank you :-)

Congruences lattices of ideals in categories and (partial) semigroups

- James East and Nik Ruškuc
- Coming soon to arXiv...