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Normal subgroups of the dihedral group Dn

They correspond to the divisors of n (sort of); also depends on
parity of n.
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Congruences

I Normal subgroups ⇔ quotient groups.

I Ideals of rings ⇔ quotient rings.

I Groups and rings are lucky... Normally we need congruences.

Definition (congruence on a structure S)

An equivalence on S compatible with its operation(s).
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Definition (congruence on a structure S)

An equivalence on S compatible with its operation(s).

Definition (congruence on a category S)

An equivalence σ on (morphisms of) S such that:

I (x , y) ∈ σ ⇒ (ax , ay), (xa, ya) ∈ σ when products defined,

I (x , y) ∈ σ ⇒ d(x) = d(y) and r(x) = r(y).
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Congruences on Tn

I Let Tn = full transformation semigroup on n = {1, . . . , n}
= {functions n→ n}.

Theorem (Mal’cev, 1952)

n 1 2 3 4 5 6 7 8 9 10

Cong(Tn)

I What are these congruences?
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Ideals and Rees congruences

Ideal of a semigroup S

A nonempty subset I of S such that IS ⊆ S and SI ⊆ S .

Rees congruence on a semigroup S

If I is an ideal of S , then we have a congruence:

RI = ∇I ∪∆S .

All of I is collapsed to a point. The rest of S is preserved.
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Congruences on Tn

I For α ∈ Tn define rank(α) = |im(α)|.

I For 1 ≤ r ≤ n define

I Dr = {α ∈ Tn : rank(α) = r},
I Ir = {α ∈ Tn : rank(α) ≤ r}.

I Ideals: I1 ⊂ I2 ⊂ · · · ⊂ In = Tn.

I Rees congruences: RI1 ⊂ RI2 ⊂ · · · ⊂ RIn = ∇.

I Inside Dr are lots of little groups ∼= Sr .

I Each N E Sr gives another congruence RN :

I each Sr collapses to Sr/N,

I all of Ir−1 collapses to a point.
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I Later: general machinery that works for many other semigroups
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Congruences on ideal extensions

Theorem

I Suppose T is a semigroup with a stable, regular maximum
J -class DT .

I Suppose the ideal S = T \ DT has a stable, regular maximum
J -class DS .

I Suppose (x , y)] = ∇S for all x ∈ DS and y ∈ S \ Hx .

I Suppose every congruence on S is liftable to T .

I One more technical assumption.

I Let G be a group H -class contained in DT .

Then

Cong(T ) =
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∆T

RT
S

RT
S,G

∇T

∼= Cong(S)

∼= N (G )
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Congruences on ideal extensions

Theorem

I Let S be a stable, regular partial semigroup with a chain of
J -classes D0 < D1 < · · · .

I The ideals of S are Ir = D0 ∪ · · · ∪ Dr (and Iω = S if the chain
is infinite).

I Let Gq be a group H -class in Dq.

I Suppose for some k every congruence on Ik is liftable to S .

I A technical property on Ik , and another on Ik+1, Ik+2, . . .

Then for any r ≥ k (including r = ω),

Cong(Ir ) =
{

∆Ir ∪ σ : σ ∈ Cong(Ik)
}

∪
{
R Ir
Iq ,N

: k ≤ q < r , N E Gq+1

}
∪
{
∇Ir

}
.
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∆Ir

RIk

RIk ,Gk+1

RIk+1

RIk+1,Gk+2

RIk+2

RIr−1

RIr−1,Gr

∇Ir

∼= Cong(Ik)

∼= N (Gk+1)

∼= N (Gk+2)

∼= N (Gr )
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More applications

I Partition categories P = P(C )

I Planar, anti-planar, annular, anti-annular subcategories.

P4 P(P4) P±(P4) A (P4) A ±(P4)
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More applications

I Some semigroups/categories with chains of ideals don’t fit the
mould of the above theorems.

I Examples include linear categories and partial braid categories.

I These have nontrivial congruences contained in H .

I We have general results to deal with (some of) these.

I Congruences of form R Ir
Iq ,Nq+1,Nq+2,...

, with Nq+1 � Nq+2 � · · ·

I Can still build Cong(Ir+1) from Cong(Ir ).

I It’s just more complicated...
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I Linear category L = L(F7)

I3(L)
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I transformations/diagrams
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Figure 10: Hasse diagram of Cong(PX) where |X| = @2.{fig:CongPX}
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Current/future work

I Other categories:

I twisted diagram categories

I tangle/vine categories

I transformations/diagrams
with infinite underlying sets

I Some fit our general framework, some don’t

I One-sided ideals

I Variants/sandwich semigroups



Thank you :-)

Congruences lattices of ideals in categories and (partial) semigroups

I James East and Nik Ruškuc

I Coming soon to arXiv...


