Congruences on ideals of semigroups and categories

W WESTERN SYDNEY UNIVERSITY

James East

Semigroup afternoon
University of York
3 July 2019

Joint work with Nik Ruškuc

Groups

Groups

Normal subgroups of the symmetric group \mathcal{S}_{n}

Groups

Normal subgroups of the symmetric group \mathcal{S}_{n}
There are three: $\left\{\mathrm{id}_{n}\right\} \unlhd \mathcal{A}_{n} \unlhd \mathcal{S}_{n}$.

Groups

Normal subgroups of the symmetric group \mathcal{S}_{n}
There are three: $\left\{\mathrm{id}_{n}\right\} \unlhd \mathcal{A}_{n} \unlhd \mathcal{S}_{n}$.

Exceptions:

- $\left\{\mathrm{id}_{0}\right\}=\mathcal{A}_{0}=\mathcal{S}_{0}$,
- $\left\{\mathrm{id}_{1}\right\}=\mathcal{A}_{1}=\mathcal{S}_{1}$,
- $\left\{\mathrm{idd}_{2}\right\}=\mathcal{A}_{2} \unlhd \mathcal{S}_{2}$,

Groups

Normal subgroups of the symmetric group \mathcal{S}_{n}
There are three: $\left\{\mathrm{id}_{n}\right\} \unlhd \mathcal{A}_{n} \unlhd \mathcal{S}_{n}$.

Exceptions:

- $\left\{\mathrm{id}_{0}\right\}=\mathcal{A}_{0}=\mathcal{S}_{0}$,
- $\left\{\mathrm{id}_{1}\right\}=\mathcal{A}_{1}=\mathcal{S}_{1}$,
- $\left\{\mathrm{idd}_{2}\right\}=\mathcal{A}_{2} \unlhd \mathcal{S}_{2}$,
- $\left\{\mathrm{id}_{4}\right\} \unlhd K \unlhd \mathcal{A}_{4} \unlhd \mathcal{S}_{4}$.

Groups

Normal subgroups of the symmetric group \mathcal{S}_{n}
There are three: $\left\{\mathrm{id}_{n}\right\} \unlhd \mathcal{A}_{n} \unlhd \mathcal{S}_{n}$.

Exceptions:
General shape of $\mathcal{N}\left(\mathcal{S}_{n}\right)$:

- $\left\{\mathrm{id}_{0}\right\}=\mathcal{A}_{0}=\mathcal{S}_{0}$,
- $\left\{\mathrm{id}_{1}\right\}=\mathcal{A}_{1}=\mathcal{S}_{1}$,
- $\left\{\mathrm{idd}_{2}\right\}=\mathcal{A}_{2} \unlhd \mathcal{S}_{2}$,
- $\left\{\mathrm{id}_{4}\right\} \unlhd K \unlhd \mathcal{A}_{4} \unlhd \mathcal{S}_{4}$.

Groups

(Normal) subgroups of the cyclic group C_{n}

They correspond to the divisors of n.

$\mathcal{N}\left(C_{12}\right)$

$\mathcal{N}\left(C_{210}\right)$

Groups

Normal subgroups of the dihedral group D_{n}

They correspond to the divisors of n (sort of); also depends on parity of n.

$\mathcal{N}\left(C_{105}\right)$

Groups

Normal subgroups of the dihedral group D_{n}

They correspond to the divisors of n (sort of); also depends on parity of n.

$\mathcal{N}\left(C_{30}\right)$

Groups

Normal subgroups of the dihedral group D_{n}

They correspond to the divisors of n (sort of); also depends on parity of n.

$\mathcal{N}\left(D_{30}\right)$

$\mathcal{N}\left(D_{105}\right)$

Congruences

Congruences

- Normal subgroups \Leftrightarrow quotient groups.

Congruences

- Normal subgroups \Leftrightarrow quotient groups.
- Ideals of rings \Leftrightarrow quotient rings.

Congruences

- Normal subgroups \Leftrightarrow quotient groups.
- Ideals of rings \Leftrightarrow quotient rings.
- Groups and rings are lucky.

Congruences

- Normal subgroups \Leftrightarrow quotient groups.
- Ideals of rings \Leftrightarrow quotient rings.
- Groups and rings are lucky... Normally we need congruences.

Congruences

- Normal subgroups \Leftrightarrow quotient groups.
- Ideals of rings \Leftrightarrow quotient rings.
- Groups and rings are lucky... Normally we need congruences.

Definition (congruence on a structure S)

An equivalence on S compatible with its operation(s).

Congruences

- Normal subgroups \Leftrightarrow quotient groups.
- Ideals of rings \Leftrightarrow quotient rings.
- Groups and rings are lucky... Normally we need congruences.

Definition (congruence on a structure S)

An equivalence on S compatible with its operation(s).

Definition (congruence on a semigroup S)

An equivalence σ on S such that:

- $(x, y) \in \sigma \Rightarrow(a x, a y),(x a, y a) \in \sigma$ for all $a \in S$.

Congruences

- Normal subgroups \Leftrightarrow quotient groups.
- Ideals of rings \Leftrightarrow quotient rings.
- Groups and rings are lucky... Normally we need congruences.

Definition (congruence on a structure S)

An equivalence on S compatible with its operation(s).

Definition (congruence on a category S)

An equivalence σ on (morphisms of) S such that:

- $(x, y) \in \sigma \Rightarrow(a x, a y),(x a, y a) \in \sigma$ when products defined,
- $(x, y) \in \sigma \Rightarrow \mathbf{d}(x)=\mathbf{d}(y)$ and $\mathbf{r}(x)=\mathbf{r}(y)$.

Congruences

- Normal subgroups \Leftrightarrow quotient groups.
- Ideals of rings \Leftrightarrow quotient rings.
- Groups and rings are lucky... Normally we need congruences.

Definition (congruence on a structure S)
An equivalence on S compatible with its operation(s).

- The set Cong (S) of all congruences forms a lattice.

Congruences

- Normal subgroups \Leftrightarrow quotient groups.
- Ideals of rings \Leftrightarrow quotient rings.
- Groups and rings are lucky... Normally we need congruences.

Definition (congruence on a structure S)

An equivalence on S compatible with its operation(s).

- The set Cong (S) of all congruences forms a lattice.

Natural problem

Given S, find Cong (S).

Congruences

- Normal subgroups \Leftrightarrow quotient groups.
- Ideals of rings \Leftrightarrow quotient rings.
- Groups and rings are lucky... Normally we need congruences.

Definition (congruence on a structure S)

An equivalence on S compatible with its operation(s).

- The set Cong (S) of all congruences forms a lattice.

Natural problem

Given S, find Cong (S).
Today S will usually be a semigroup.

Congruences on \mathcal{T}_{n}

Congruences on \mathcal{T}_{n}

- Let $\mathcal{T}_{n}=$ full transformation semigroup on $\mathbf{n}=\{1, \ldots, n\}$ $=\{$ functions $\mathbf{n} \rightarrow \mathbf{n}\}$.

Congruences on \mathcal{T}_{n}

- Let $\mathcal{T}_{n}=$ full transformation semigroup on $\mathbf{n}=\{1, \ldots, n\}$ $=\{$ functions $\mathbf{n} \rightarrow \mathbf{n}\}$.

Theorem (Mal'cev, 1952)

Congruences on \mathcal{T}_{n}

- Let $\mathcal{T}_{n}=$ full transformation semigroup on $\mathbf{n}=\{1, \ldots, n\}$ $=\{$ functions $\mathbf{n} \rightarrow \mathbf{n}\}$.

Theorem (Mal'cev, 1952)

-What are these congruences?

Ideals and Rees congruences

Ideals and Rees congruences

Ideal of a semigroup S

Ideals and Rees congruences

Ideal of a semigroup S

A nonempty subset I of S such that $I S \subseteq S$ and $S I \subseteq S$.

Ideals and Rees congruences

Ideal of a semigroup S

A nonempty subset I of S such that $I S \subseteq S$ and $S I \subseteq S$.

Rees congruence on a semigroup S

Ideals and Rees congruences

Ideal of a semigroup S

A nonempty subset I of S such that $I S \subseteq S$ and $S I \subseteq S$.

Rees congruence on a semigroup S
If I is an ideal of S, then we have a congruence:

$$
R_{I}=\nabla_{I} \cup \Delta_{S}
$$

Ideals and Rees congruences

Ideal of a semigroup S

A nonempty subset I of S such that $I S \subseteq S$ and $S I \subseteq S$.

Rees congruence on a semigroup S
If I is an ideal of S, then we have a congruence:

$$
R_{I}=\nabla_{l} \cup \Delta_{S}
$$

All of I is collapsed to a point.

Ideals and Rees congruences

Ideal of a semigroup S

A nonempty subset I of S such that $I S \subseteq S$ and $S I \subseteq S$.

Rees congruence on a semigroup S
If I is an ideal of S, then we have a congruence:

$$
R_{I}=\nabla_{I} \cup \Delta_{S}
$$

All of I is collapsed to a point. The rest of S is preserved.

Congruences on \mathcal{T}_{n}

Theorem (Mal'cev, 1952)

- Rees congruences are white.

Congruences on \mathcal{T}_{n}

Theorem (Mal'cev, 1952)

- Rees congruences are white.
- What are the other congruences?

Congruences on \mathcal{T}_{n}

- For $\alpha \in \mathcal{T}_{n}$ define $\operatorname{rank}(\alpha)=|\operatorname{im}(\alpha)|$.

Congruences on \mathcal{T}_{n}

- For $\alpha \in \mathcal{T}_{n}$ define rank $(\alpha)=|\operatorname{im}(\alpha)|$.
- For $1 \leq r \leq n$ define
- $D_{r}=\left\{\alpha \in \mathcal{T}_{n}: \operatorname{rank}(\alpha)=r\right\}$,

Congruences on \mathcal{T}_{n}

- For $\alpha \in \mathcal{T}_{n}$ define $\operatorname{rank}(\alpha)=|\operatorname{im}(\alpha)|$.
- For $1 \leq r \leq n$ define
- $D_{r}=\left\{\alpha \in \mathcal{T}_{n}: \operatorname{rank}(\alpha)=r\right\}$,

Congruences on \mathcal{T}_{n}

- For $\alpha \in \mathcal{T}_{n}$ define $\operatorname{rank}(\alpha)=|\operatorname{im}(\alpha)|$.
- For $1 \leq r \leq n$ define
- $D_{r}=\left\{\alpha \in \mathcal{T}_{n}: \operatorname{rank}(\alpha)=r\right\}$,
- $I_{r}=\left\{\alpha \in \mathcal{T}_{n}: \operatorname{rank}(\alpha) \leq r\right\}$.

Congruences on \mathcal{T}_{n}

- For $\alpha \in \mathcal{T}_{n}$ define $\operatorname{rank}(\alpha)=|\operatorname{im}(\alpha)|$.
- For $1 \leq r \leq n$ define
- $D_{r}=\left\{\alpha \in \mathcal{T}_{n}: \operatorname{rank}(\alpha)=r\right\}$,
- $I_{r}=\left\{\alpha \in \mathcal{T}_{n}: \operatorname{rank}(\alpha) \leq r\right\}$.

Congruences on \mathcal{T}_{n}

- For $\alpha \in \mathcal{T}_{n}$ define $\operatorname{rank}(\alpha)=|\operatorname{im}(\alpha)|$.
- For $1 \leq r \leq n$ define
- $D_{r}=\left\{\alpha \in \mathcal{T}_{n}: \operatorname{rank}(\alpha)=r\right\}$,
- $\quad I_{r}=\left\{\alpha \in \mathcal{T}_{n}: \operatorname{rank}(\alpha) \leq r\right\}$.
- Ideals: $I_{1} \subset I_{2} \subset \cdots \subset I_{n}=\mathcal{T}_{n}$.

Congruences on \mathcal{T}_{n}

- For $\alpha \in \mathcal{T}_{n}$ define $\operatorname{rank}(\alpha)=|\operatorname{im}(\alpha)|$.
- For $1 \leq r \leq n$ define
- $D_{r}=\left\{\alpha \in \mathcal{T}_{n}: \operatorname{rank}(\alpha)=r\right\}$,
- $\quad I_{r}=\left\{\alpha \in \mathcal{T}_{n}: \operatorname{rank}(\alpha) \leq r\right\}$.
- Ideals: $I_{1} \subset I_{2} \subset \cdots \subset I_{n}=\mathcal{T}_{n}$.
- Rees congruences: $R_{l_{1}} \subset R_{l_{2}} \subset \cdots \subset R_{l_{n}}=\nabla$.

Congruences on \mathcal{T}_{n}

- For $\alpha \in \mathcal{T}_{n}$ define $\operatorname{rank}(\alpha)=|\operatorname{im}(\alpha)|$.
- For $1 \leq r \leq n$ define
- $D_{r}=\left\{\alpha \in \mathcal{T}_{n}: \operatorname{rank}(\alpha)=r\right\}$,
- $\quad I_{r}=\left\{\alpha \in \mathcal{T}_{n}: \operatorname{rank}(\alpha) \leq r\right\}$.
- Ideals: $I_{1} \subset I_{2} \subset \cdots \subset I_{n}=\mathcal{T}_{n}$.
- Rees congruences: $R_{l_{1}} \subset R_{l_{2}} \subset \cdots \subset R_{l_{n}}=\nabla$.
- Inside D_{r} are lots of little groups $\cong \mathcal{S}_{r}$.

Congruences on \mathcal{T}_{n}

- For $\alpha \in \mathcal{T}_{n}$ define rank $(\alpha)=|\operatorname{im}(\alpha)|$.

Congruences on \mathcal{T}_{n}

- For $\alpha \in \mathcal{T}_{n}$ define rank $(\alpha)=|\operatorname{im}(\alpha)|$.

Congruences on \mathcal{T}_{n}

- For $\alpha \in \mathcal{T}_{n}$ define rank $(\alpha)=|\operatorname{im}(\alpha)|$.
- For $1 \leq r \leq n$ define
- $D_{r}=\left\{\alpha \in \mathcal{T}_{n}: \operatorname{rank}(\alpha)=r\right\}$,
- $\quad I_{r}=\left\{\alpha \in \mathcal{T}_{n}: \operatorname{rank}(\alpha) \leq r\right\}$.
- Ideals: $I_{1} \subset I_{2} \subset \cdots \subset I_{n}=\mathcal{T}_{n}$.
- Rees congruences: $R_{l_{1}} \subset R_{l_{2}} \subset \cdots \subset R_{l_{n}}=\nabla$.
- Inside D_{r} are lots of little groups $\cong \mathcal{S}_{r}$.
- Each $N \unlhd \mathcal{S}_{r}$ gives another congruence R_{N} :
- each \mathcal{S}_{r} collapses to \mathcal{S}_{r} / N,

Congruences on \mathcal{T}_{n}

- For $\alpha \in \mathcal{T}_{n}$ define rank $(\alpha)=|\operatorname{im}(\alpha)|$.

$$
\mathcal{T}_{4}
$$

- For $1 \leq r \leq n$ define
- $D_{r}=\left\{\alpha \in \mathcal{T}_{n}: \operatorname{rank}(\alpha)=r\right\}$,
- $\quad I_{r}=\left\{\alpha \in \mathcal{T}_{n}: \operatorname{rank}(\alpha) \leq r\right\}$.
- Ideals: $I_{1} \subset I_{2} \subset \cdots \subset I_{n}=\mathcal{T}_{n}$.
- Rees congruences: $R_{l_{1}} \subset R_{l_{2}} \subset \cdots \subset R_{l_{n}}=\nabla$.
- Inside D_{r} are lots of little groups $\cong \mathcal{S}_{r}$.
- Each $N \unlhd \mathcal{S}_{r}$ gives another congruence R_{N} :
- each \mathcal{S}_{r} collapses to \mathcal{S}_{r} / N,
- all of I_{r-1} collapses to a point.

Congruences on \mathcal{T}_{n}

$\begin{array}{lll}\mathcal{T}_{4} & \operatorname{Cong}\left(\mathcal{T}_{4}\right) & \mathcal{T}_{4}\end{array}$

Congruences on \mathcal{T}_{n}

\mathcal{T}_{4}

$\operatorname{Cong}\left(\mathcal{T}_{4}\right)$
\mathcal{T}_{4} / Δ

$\Delta-x-x^{\infty}-\infty-x^{\infty}-\infty-\infty-\infty$

Congruences on \mathcal{T}_{n}

\mathcal{T}_{4}

$\operatorname{Cong}\left(\mathcal{T}_{4}\right)$
\mathcal{T}_{4} / R_{1}

Congruences on \mathcal{T}_{n}

\mathcal{T}_{4}
$\operatorname{Cong}\left(\mathcal{T}_{4}\right)$
$\mathcal{T}_{4} / R_{\mathcal{S}_{2}}$

$\mathcal{S}_{2} / \mathcal{S}_{2} \cong \mathcal{S}_{1}$

Congruences on \mathcal{T}_{n}

\mathcal{T}_{4}
$\operatorname{Cong}\left(\mathcal{T}_{4}\right)$
\mathcal{T}_{4} / R_{12}

Congruences on \mathcal{T}_{n}

\mathcal{T}_{4}
$\operatorname{Cong}\left(\mathcal{T}_{4}\right)$
$\mathcal{T}_{4} / R_{\mathcal{A}_{3}}$

$\mathcal{S}_{3} / \mathcal{A}_{3} \cong \mathcal{S}_{2}$

Congruences on \mathcal{T}_{n}

\mathcal{T}_{4}
$\operatorname{Cong}\left(\mathcal{T}_{4}\right)$
$\mathcal{T}_{4} / R_{\mathcal{S}_{3}}$

Congruences on \mathcal{T}_{n}

\mathcal{T}_{4}
$\operatorname{Cong}\left(\mathcal{T}_{4}\right)$
$\mathcal{T}_{4} / R_{1 / 3}$

54

Congruences on \mathcal{T}_{n}

\mathcal{T}_{4}
Cong $\left(\mathcal{T}_{4}\right)$
\mathcal{T}_{4} / R_{K}

5
$\mathcal{S}_{4} / K \cong \mathcal{S}_{3}$

Congruences on \mathcal{T}_{n}

\mathcal{T}_{4}
$\operatorname{Cong}\left(\mathcal{T}_{4}\right)$
$\mathcal{T}_{4} / R_{\mathcal{A}_{4}}$

Congruences on \mathcal{T}_{n}

$\mathcal{T}_{4} \quad \operatorname{Cong}\left(\mathcal{T}_{4}\right) \quad \mathcal{T}_{4} / R_{\mathcal{S}_{4}}$

Congruences on \mathcal{T}_{n}

$$
\mathcal{T}_{4}
$$

$\operatorname{Cong}\left(\mathcal{T}_{4}\right)$
\mathcal{T}_{4} / ∇

Congruences on ideals

Congruences on ideals

- An ideal I of S leads to a congruence R_{I} on S.

Congruences on ideals

- An ideal $/$ of S leads to a congruence R_{l} on S.
- But l is also a semigroup!

Congruences on ideals

- An ideal $/$ of S leads to a congruence R_{l} on S.
- But $/$ is also a semigroup!
- What are the congruences on I?

Congruences on ideals

- An ideal $/$ of S leads to a congruence R_{l} on S.
- But I is also a semigroup!
- What are the congruences on I?

Natural problem

Given S, find Cong(I) for each ideal I of S.

Congruences on ideals

- An ideal $/$ of S leads to a congruence R_{l} on S.
- But I is also a semigroup!
- What are the congruences on I?

Natural problem

Given S, find Cong (I) for each ideal I of S.

Natural problem
Can we describe Cong $\left(I_{r}\right)$, where $I_{r}=I_{r}\left(\mathcal{T}_{n}\right)$?

Congruences on ideals

- An ideal $/$ of S leads to a congruence R_{I} on S.
- But I is also a semigroup!
- What are the congruences on I?

Natural problem

Given S, find Cong (I) for each ideal I of S.

Natural problem
Can we describe $\operatorname{Cong}\left(I_{r}\right)$, where $I_{r}=I_{r}\left(\mathcal{T}_{n}\right)$?

- Let's ask GAP!

Congruences on ideals of \mathcal{T}_{4}

Cong (I_{1})

Cong (l_{2}) Cong ($/ 3$)

Cong $\left(I_{4}\right)$

Congruences on ideals of \mathcal{T}_{4}

Cong $\left(I_{1}\right)$

Cong $\left(I_{3}\right) \quad \operatorname{Cong}\left(I_{4}\right)$

- I_{1} is an n-element right-zero semigroup: $\operatorname{Cong}\left(I_{1}\right) \cong \mathfrak{E} \mathfrak{q}_{n}$.

Congruences on ideals of \mathcal{T}_{4}

Cong (I_{1})

Cong $\left(I_{2}\right)$

Cong $\left(I_{3}\right) \quad \operatorname{Cong}\left(I_{4}\right)$

- I_{1} is an n-element right-zero semigroup: $\operatorname{Cong}\left(I_{1}\right) \cong \mathfrak{E} \mathfrak{q}_{n}$.
- For $r \geq 2$, is Cong $\left(I_{r}\right)$ just $\operatorname{Cong}\left(\mathcal{T}_{n}\right)$ chopped off?

Congruences on ideals of \mathcal{T}_{n}

Theorem
Yes!

Congruences on ideals of \mathcal{T}_{n}

Theorem

- $\operatorname{Cong}\left(I_{1}\right) \cong \mathfrak{E q} \mathfrak{g}_{n}$.
- Cong $\left(I_{r}\right)=\left\{R_{N}^{I_{r}}: N \unlhd \mathcal{S}_{q}, q \leq n\right\} \cup\left\{\nabla_{I_{r}}\right\}$ for $2 \leq r \leq n$.

Congruences on ideals of \mathcal{T}_{n}

Theorem

- $\operatorname{Cong}\left(I_{1}\right) \cong \mathfrak{E q}_{n}$.
- Cong $\left(I_{r}\right)=\left\{R_{N}^{I_{r}}: N \unlhd \mathcal{S}_{q}, q \leq n\right\} \cup\left\{\nabla_{I_{r}}\right\}$ for $2 \leq r \leq n$.
- Original proof strategy:
- Deal with I_{1} and $I_{r}(r \geq 2)$ separately.
- Use knowledge about $\operatorname{Cong}\left(\mathcal{T}_{n}\right)$.

Congruences on ideals of \mathcal{T}_{n}

Theorem

- $\operatorname{Cong}\left(I_{1}\right) \cong \mathfrak{E q}_{n}$.
- Cong $\left(I_{r}\right)=\left\{R_{N}^{I_{r}}: N \unlhd \mathcal{S}_{q}, q \leq n\right\} \cup\left\{\nabla I_{r}\right\}$ for $2 \leq r \leq n$.
- Original proof strategy:
- Deal with I_{1} and $I_{r}(r \geq 2)$ separately.
- Use knowledge about Cong $\left(\mathcal{T}_{n}\right)$.
- Later: general machinery that works for many other semigroups and categories...
- transformations, linear transformations, diagrams, braids...

Congruences on ideals of \mathcal{T}_{n}

Theorem

- $\operatorname{Cong}\left(I_{1}\right) \cong \mathfrak{E q}_{n}$.
- Cong $\left(I_{r}\right)=\left\{R_{N}^{I_{r}}: N \unlhd \mathcal{S}_{q}, q \leq n\right\} \cup\left\{\nabla_{I_{r}}\right\}$ for $2 \leq r \leq n$.
- Original proof strategy:
- Deal with I_{1} and $I_{r}(r \geq 2)$ separately.
- Use knowledge about Cong $\left(\mathcal{T}_{n}\right)$.
- Later: general machinery that works for many other semigroups and categories...
- transformations, linear transformations, diagrams, braids...
- Treat smallest ideal(s) of S, then "lift" from one to the next.

Congruences on ideals of \mathcal{T}_{n}

Theorem

- $\operatorname{Cong}\left(I_{1}\right) \cong \mathfrak{E q}_{n}$.
- Cong $\left(I_{r}\right)=\left\{R_{N}^{I_{r}}: N \unlhd \mathcal{S}_{q}, q \leq n\right\} \cup\left\{\nabla_{I_{r}}\right\}$ for $2 \leq r \leq n$.
- Original proof strategy:
- Deal with I_{1} and $I_{r}(r \geq 2)$ separately.
- Use knowledge about Cong $\left(\mathcal{T}_{n}\right)$.
- Later: general machinery that works for many other semigroups and categories...
- transformations, linear transformations, diagrams, braids...
- Treat smallest ideal(s) of S, then "lift" from one to the next.
- No need to know Cong(S) in advance.

Congruences on ideal extensions

Congruences on ideal extensions

Theorem

- Suppose T is a semigroup with a stable, regular maximum \mathscr{J}-class D_{T}.
- Suppose the ideal $S=T \backslash D_{T}$ has a stable, regular maximum \mathscr{J}-class D_{S}.
- Suppose $(x, y)^{\sharp}=\nabla_{S}$ for all $x \in D_{S}$ and $y \in S \backslash H_{x}$.
- Suppose every congruence on S is liftable to T.
- One more technical assumption.
- Let G be a group \mathscr{H}-class contained in D_{T}.

Then
$\operatorname{Cong}(T)=\left\{\Delta_{D_{T}} \cup \sigma: \sigma \in \operatorname{Cong}(S)\right\} \cup\left\{R_{S, N}^{T}: N \unlhd G\right\} \cup\left\{\nabla_{T}\right\}$.

Congruences on ideal extensions

Congruences on ideal extensions

Congruences on ideal extensions

Theorem

- Let S be a stable, regular partial semigroup with a chain of \mathscr{J}-classes $D_{0}<D_{1}<\cdots$.
- The ideals of S are $I_{r}=D_{0} \cup \cdots \cup D_{r}$ (and $I_{\omega}=S$ if the chain is infinite).
- Let G_{q} be a group \mathscr{H}-class in D_{q}.
- Suppose for some k every congruence on I_{k} is liftable to S.
- A technical property on I_{k}, and another on I_{k+1}, I_{k+2}, \ldots

Then for any $r \geq k$ (including $r=\omega$),

$$
\begin{aligned}
\operatorname{Cong}\left(I_{r}\right)= & \left\{\Delta_{I_{r}} \cup \sigma: \sigma \in \operatorname{Cong}\left(I_{k}\right)\right\} \\
& \cup\left\{R_{I_{q}, N}^{I_{r}}: k \leq q<r, N \unlhd G_{q+1}\right\} \cup\left\{\nabla_{I_{r}}\right\} .
\end{aligned}
$$

Congruences on ideal extensions

More applications

More applications

- Full transformation categories $\mathcal{T}=\mathcal{T}(\mathscr{C})$

More applications

- Full transformation categories $\mathcal{T}=\mathcal{T}(\mathscr{C})$
- Subcategories preserving/reversing order/orientation: $\mathcal{O}, \mathcal{O} \mathcal{O}, \mathcal{O}, \mathcal{O}$.

More applications

- Full transformation categories $\mathcal{T}=\mathcal{T}(\mathscr{C})$
- Subcategories preserving/reversing order/orientation: $\mathcal{O}, \mathcal{O} \mathcal{O}, \mathcal{O}, \mathcal{O}$.

More applications

- Partition categories $\mathcal{P}=\mathcal{P}(\mathscr{C})$
- Planar, anti-planar, annular, anti-annular subcategories.

More applications

- Brauer categories \mathcal{B}

More applications

- Brauer categories \mathcal{B}
- $I_{0}\left(\mathcal{B}_{4}\right): \quad \mathfrak{E q}_{3} \times \mathfrak{E q}_{3}$

More applications

- Brauer categories \mathcal{B}
- $I_{2}\left(\mathcal{B}_{4}\right): \quad\left(\mathfrak{E q}_{3} \times \mathfrak{E q}_{3}\right) \times 3$

More applications

- Brauer categories \mathcal{B}
- $I_{4}\left(\mathcal{B}_{4}\right)$

More applications

- Brauer categories \mathcal{B}
- (Anti-)planar/annular subcategories: Temperley-Lieb, Jones...

More applications

- (Anti-) Temperley-Lieb categories $\mathcal{T} \mathcal{L}$ and $\mathcal{T} \mathcal{L}^{ \pm}$

More applications

- (Anti-)Jones categories \mathcal{J} and $\mathcal{J}^{ \pm}$

More applications

- Some semigroups/categories with chains of ideals don't fit the mould of the above theorems.

More applications

- Some semigroups/categories with chains of ideals don't fit the mould of the above theorems.
- Examples include linear categories and partial braid categories.

More applications

- Some semigroups/categories with chains of ideals don't fit the mould of the above theorems.
- Examples include linear categories and partial braid categories.
- These have nontrivial congruences contained in \mathscr{H}.

More applications

- Some semigroups/categories with chains of ideals don't fit the mould of the above theorems.
- Examples include linear categories and partial braid categories.
- These have nontrivial congruences contained in \mathscr{H}.
- We have general results to deal with (some of) these.

More applications

- Some semigroups/categories with chains of ideals don't fit the mould of the above theorems.
- Examples include linear categories and partial braid categories.
- These have nontrivial congruences contained in \mathscr{H}.
- We have general results to deal with (some of) these.
- Congruences of form $R_{I_{q}, N_{q+1}, N_{q+2}, \ldots}^{l_{r}}$, with $N_{q+1} \succeq N_{q+2} \succeq \ldots$

More applications

- Some semigroups/categories with chains of ideals don't fit the mould of the above theorems.
- Examples include linear categories and partial braid categories.
- These have nontrivial congruences contained in \mathscr{H}.
- We have general results to deal with (some of) these.
- Congruences of form $R_{I_{q}, N_{q+1}, N_{q+2}, \ldots}^{l_{r}}$, with $N_{q+1} \succeq N_{q+2} \succeq \cdots$
- Can still build Cong $\left(I_{r+1}\right)$ from Cong $\left(I_{r}\right)$.
- It's just more complicated...

More applications

- Linear category $\mathcal{L}=\mathcal{L}\left(\mathbb{F}_{7}\right)$

$I_{1}(\mathcal{L})$

$I_{2}(\mathcal{L})$

More applications

- Linear category $\mathcal{L}=\mathcal{L}\left(\mathbb{F}_{7}\right)$

Current/future work

Current/future work

- Other categories:

Current/future work

- Other categories:
- twisted diagram categories

Current/future work

- Other categories:
- twisted diagram categories
- tangle/vine categories

Current/future work

- Other categories:
- twisted diagram categories
- tangle/vine categories
- transformations/diagrams with infinite underlying sets

Current/future work

- Other categories:
- twisted diagram categories
- tangle/vine categories
- transformations/diagrams with infinite underlying sets
- Some fit our general framework, some don't

Current/future work

- Other categories:
- twisted diagram categories
- tangle/vine categories
- transformations/diagrams with infinite underlying sets
- Some fit our general framework, some don't
- One-sided ideals

Current/future work

- Other categories:
- twisted diagram categories
- tangle/vine categories
- transformations/diagrams with infinite underlying sets
- Some fit our general framework, some don't
- One-sided ideals
- Variants/sandwich semigroups

Thank you :-)

Congruences lattices of ideals in categories and (partial) semigroups

- James East and Nik Ruškuc
- Coming soon to arXiv...

